0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational and Experimental Study of the Effect of Inlet Swirl on Mixing Mechanisms in an Axisymmetric Lobed Mixer

[+] Author Affiliations
Joshua R. Brinkerhoff, Metin I. Yaras

Carleton University, Ottawa, Canada

Paper No. GT2014-25691, pp. V01AT01A014; 20 pages
doi:10.1115/GT2014-25691
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1A: Aircraft Engine; Fans and Blowers
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4557-8
  • Copyright © 2014 by ASME

abstract

The effect of circumferential inflow swirl on the instability of the shear layer formed between the core and bypass flows discharged from an axisymmetric twelve-lobed mixer is studied through a combined experimental and computational investigation. A series of unsteady Navier-Stokes simulations are performed with 0 and 31 degrees of circumferential swirl specified in the core stream of the lobed mixer. Comparison of the axial- and swirling-inflow cases highlights the effect of swirl on the instability-driven transient flow structures that develop within and downstream of the lobed mixer. Medium- and large-scale unsteady motions are captured by the fine spatial and temporal resolution of the unsteady Navier-Stokes simulations. The simulations are validated against four-wire thermal anemometry measurements in a scaled lobed-mixer wind-tunnel model with turbulent, swirling inflow conditions. The simulation results illustrate that while the axial-inflow case develops layers of streamwise vorticity uniformly along the lobe walls, the core flow in the swirling-inflow case separates from the suction side of the lobe wall near the lobe trough. Roll-up and axial stretching of the separated flow produces Λ-shaped vortical structures upstream of the discharge plane. The Λ-shaped structures interact with the shear layers discharged from the lobe trailing edge and accelerate the breakdown of the shear layer in the swirling-inflow case relative to the axial-inflow case. The extent of this interaction is shown to strongly affect the streamwise mixing rate of the flow downstream of the discharge plane.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In