Full Content is available to subscribers

Subscribe/Learn More  >

Control of Secondary Flows in a Turbine Nozzle Guide Vane by Endwall Contouring

[+] Author Affiliations
T. I-P. Shih, Y.-L. Lin

Michigan State University, East Lansing, MI

T. W. Simon

The University of Minnesota, Minneapolis, MN

Paper No. 2000-GT-0556, pp. V003T01A101; 13 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME


Computations were performed to study the three-dimensional flow and temperature distribution in a nozzle guide vane that has one flat and one contoured endwall with and without film cooling injected from two slots, one on each endwall located just upstream of the airfoil. For the contoured endwall, two locations of the same contouring were investigated, one with all contouring upstream of the airfoil and another with the contouring starting upstream of the airfoil and continuing through the airfoil passage.

Results obtained show that when the contouring is all upstream of the airfoil, secondary flows on both the flat and the contoured endwalls are similar in magnitude. When the contouring starts upstream of the airfoil and continues through the airfoil passage, secondary flows on the contoured endwall are markedly weaker than those on the flat endwall. With weaker secondary flows on the contoured endwall, film-cooling effectiveness there is greatly improved.

This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence were modeled by the low Reynolds number shear-stress transport k-ω model. Solutions were generated by a cell-centered, finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters and multigrid acceleration of a diagonalized ADI scheme with local time stepping on patched/embedded structured grids.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In