Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Gap Leakage on Fluid Flow in a Contoured Turbine Nozzle Guide Vane

[+] Author Affiliations
Y.-L. Lin, T. I-P. Shih

Michigan State University, East Lansing, MI

M. K. Chyu

Carnegie Mellon University, Pittsburgh, PA

R. S. Bunker

General Electric Company, Schenectady, NY

Paper No. 2000-GT-0555, pp. V003T01A100; 13 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME


Computations were performed to study the three-dimensional flow in a nozzle guide vane with leakage issuing from a narrow gap with a backward-facing step located upstream of the airfoil on each endwall. The nozzle guide vane investigated has one flat and one contoured endwall. For the contoured endwall, two configurations of the same contouring profile were investigated with and without gap leakage. In one configuration, all contouring is upstream of the airfoil passage. In the other, the contouring starts upstream of the airfoil passage and continues through it.

Results obtained show that when there is gap leakage, secondary flows are reduced at all endwalls for both nozzle configurations investigated. Without gap leakage, secondary flows are reduced only on the contoured endwall in which the contouring started upstream of the airfoil passage and continued through it. When all of the contouring is located upstream of the airfoil passage, there is considerable hot gas ingestion into the gap at both endwalls. When the contouring starts upstream of the airfoil passage and continues throught it, hot gas ingestion was minimal at the contoured endwall and greatly reduced at the flat endwall.

This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence were modeled by the low Reynolds number shear-stress transport k-ω model. Solutions were generated by a cell-centered finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters and multigrid acceleration of a diagonalized ADI scheme with local time stepping on patched structured grids.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In