Full Content is available to subscribers

Subscribe/Learn More  >

Conjugate Heat Transfer Analysis of an Engine Internal Cavity

[+] Author Affiliations
A. Montenay, L. Paté, J. M. Duboué

Snecma, Moissy-Cramayel, France

Paper No. 2000-GT-0282, pp. V003T01A086; 10 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME


The analysis of heat transfer in engine cavities or blade internal cooling systems is one of the most challenging work for aircraft engines designers for two main reasons. Firstly, the efficiency of such systems has a direct influence on both life and performance of these engines. Secondly, the available tools to predict heat transfer in both solid parts and surrounding cooling gases, i.e. Navier Stokes and conduction codes, are often used independently. An interaction model between the fluid and solid media is generally required and remains a difficult issue in engine configurations. A coupling procedure between a Navier-Stokes code and a conduction solver is therefore the only way to achieve heat transfer predictions in all flow situations. The objective of this work is to present such a procedure, which has been developed at Snecma and based on a Finite Volume Navier-Stokes code and a commercial Finite Element solver.

The first application showed in the paper demontrates, with an uncoupled calculation that the Navier-Stokes code MSD, from ONERA, is able to predict heat transfer with an acceptable accuracy. The discretization used in the solid to predict heat conduction is briefly presented. Then the steady state coupling procedure is exposed and validated with an analytical solution. Finally, a conjugate heat transfer computation in a rotor/rotor cavity of a real engine, with rotating solid disks, is described in detail.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In