Full Content is available to subscribers

Subscribe/Learn More  >

Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material

[+] Author Affiliations
Zhen-Xue Han

The University of Texas at Arlington, Arlington, TX

Brian H. Dennis

The Pennsylvania State University, University Park, PA

George S. Dulikravich

University of Texas at Arlington, Arlington, TX

Paper No. 2000-GT-0253, pp. V003T01A059; 10 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME


A two-dimensional (2-D) and a three-dimensional (3-D) conjugate heat transfer (convection-conduction) prediction codes were developed where the compressible turbulent flow Navier-Stokes equations are solved simultaneously in the flow-field and in the solid material of the structure thus automatically predicting correct magnitudes and distribution of surface temperatures and heat fluxes. The only thermal boundary conditions are the convection heat transfer coefficients specified on the surfaces of the internal coolant flow passages and the coolant bulk temperature of internally cooled gas turbine blade. This approach eliminates the need to specify hot surface temperature or heat flux distribution. The conjugate codes use hybrid unstructured triangular/quadrilateral grids in 2-D and unstructured prismatic grids in 3-D throughout the flow-field and in the surrounding structure. The codes are capable of conjugate heat transfer prediction in arbitrarily shaped internally cooled configurations. The computer codes have been successfully tested on internally cooled turbine airfoil cascades and 3-D turbine blades by the conjugate solution of the flow-field and the temperature field inside the structure.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In