0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Liquid Crystal Measurement of Leading Edge Film Cooling Effectiveness and Heat Transfer With High Free Stream Turbulence

[+] Author Affiliations
Shichuan Ou, Richard Rivir, Matthew Meininger

Air Force Research Laboratory, WPAFB, OH

Fred Soechting, Martin Tabbita

Pratt & Whitney Aircraft Engines, West Palm Beach, FL

Paper No. 2000-GT-0245, pp. V003T01A052; 13 pages
doi:10.1115/2000-GT-0245
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME

abstract

This paper studies the film effectiveness and heat transfer coefficients on a large scale symmetric circular leading edge with three rows of film holes. The film hole configuration focuses on a smaller injection angle of 20° and a larger hole pitch with respect to the hole diameter (P/d = 7.86). The study includes four blowing ratios (M = 1.0, 1.5, 2.0 and 2.5), two Reynolds numbers (Re = 30,000 and 60,000), and two free stream turbulence levels (approximately Tu = 1% and 20% depending on the Reynolds number). The method used to obtain the film cooling effectiveness and the heat transfer coefficient in the experiment is a transient liquid crystal technique. The distributions of film effectiveness and heat transfer coefficient are obtained with spatial resolutions of about 0.6 mm or 13% of the film cooling hole diameter. Results are presented for detailed and spanwise averaged values of film effectiveness and Frössling number. Blowing ratios investigated result in up to 2.8 times the lowest blowing ratio’s film effectiveness. Increasing the Reynolds number from 30,000 to 60,000 results in increasing the effectiveness by up to 55% at high turbulence. Turbulence intensity has up to a 60% attenuation on effectiveness between rows at Re = 30,000. The turbulence intensity has the same order of magnitude but opposite effect as Reynolds number, which also has the same order of magnitude effect as blowing ratio on the film effectiveness. A crossover from attenuation to improved film effectiveness after the second row of film holes is found for the high turbulence case as blowing ratio increases. The blowing ratio of two shows a spatial coupling of the stagnation row of film holes with the second row (21.5°) of film holes which results in the highest film effectiveness and also the highest Frössling numbers.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In