0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow

[+] Author Affiliations
Rohit A. Oke, Terrence W. Simon

University of Minnesota, Minneapolis, MN

Steven W. Burd

Pratt and Whitney, East Hartford, CT

Rickard Vahlberg

Royal Swedish Institute, Stockholm, Sweden

Paper No. 2000-GT-0214, pp. V003T01A022; 9 pages
doi:10.1115/2000-GT-0214
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME

abstract

Thermal and flow field measurements taken within a cascade passage are presented. The cascade has two passages between three airfoils and two endwalls, one flat and one contoured. Measurements were done on and near the contoured endwall. The main objective is to document the effectiveness of cooling the contoured endwall with bleed flow that emerges through two rows of staggered, discrete holes on the contoured endwall, upstream of the airfoils. Similar studies have been performed in our lab with bleed flow emerging from slots upstream of the same contoured endwall. Both those and the present studies are with high free stream turbulence intensity, TI ∼ 9%, of the approach flow. This is characteristic of the approach flow to first stage vanes in most operating engines. In the experiments, the bleed flow is heated slightly above the main stream flow and downstream temperature fields are documented. Three bleed flow rates are tested. It is shown that at a lower flow rate (1.5% of the core flow) the cascade endwall cross-flow carries coolant towards the suction side. However, as the coolant rate is increased, the coolant attains sufficient momentum that no suction-side coolant migration is seen. Velocity measurements taken with triple-sensor, hot-wire anemometry document migration of the bleed flow by way of showing regions of stronger shear, and help describe mixing of the passage flow with the bleed flow. At higher coolant flow rates, strong blockage and mixing effects become evident.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In