0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Flow and Heat Transfer in the End-Wall Region of a Turbine Blade Passage

[+] Author Affiliations
Yumin Xiao, R. S. Amano

University of Wisconsin-Milwaukee, WI

Paper No. 2000-GT-0211, pp. V003T01A019; 9 pages
doi:10.1115/2000-GT-0211
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME

abstract

A numerical study has been performed to predict a three-dimensional turbulent flow and end-wall heat transfer in a blade passage. The complex three-dimensional flow in the end-wall region has an important impact on the local heat transfer. The leading edge horseshoe vortex, the leading edge corner vortices, the passage vortex, and the trailing edge wake cause large variations in the entire end-wall region. The heat transfer distributions in the end-wall region are calculated and the mechanism for the high heat transfer region has been revealed. The calculations show that the algebraic turbulence model lacks the ability to predict the heat transfer in the transition region, but it is valid in other flow region. The local high heat transfer downstream of the trailing edge is enhanced by the wake downstream of the trailing edge. The horseshoe vortex results a high heat transfer region near the leading edge and induces the leading edge corner vortices which cause high heat transfer on the end-wall at both sides of blade end-wall corner.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In