Full Content is available to subscribers

Subscribe/Learn More  >

Leakage Flow Over Shrouded Turbine Blades

[+] Author Affiliations
Yumin Xiao, R. S. Amano

University of Wisconsin-Milwaukee, WI

Paper No. 2000-GT-0193, pp. V003T01A001; 8 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7856-9
  • Copyright © 2000 by ASME


In this paper the flows over shrouded turbine blades with single, double, and triple tip seals were simulated by using the two-dimensional Reynolds-averaged Navier-Stokes equations and a compressible k-ε turbulence model. A multi-zone technique was used to generate the grids in the complex flow channel. The calculation results showed that the flow in the seal channel is very complicated and the leakage flow rate is dominated by the minimum flow area and the pressure difference. It showed that the leakage flow rate varies as a function of the number of seals to the power of −0.45. For the cases of multiple-seals the space between two seals has little effect on the total mass flow rate. Finally, it appears there is not a simple function between the leakage flow and the pressure difference.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In