0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of Chromium Containing Fuel Additive to Reduce High Temperature Corrosion of Hot Section Parts

[+] Author Affiliations
Jean-Pierre Stalder, Peter A. Huber

Turbotect Ltd., Baden, Switzerland

Paper No. 2000-GT-0138, pp. V002T02A055; 8 pages
doi:10.1115/2000-GT-0138
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME

abstract

The use of “clean” fuel is a prerequisite at today’s elevated gas turbine firing temperature, modern engines are more sensitive to high temperature corrosion if there are impurities present in the fuel and/or in the combustion air. It is a common belief that distillate grade fuels are contaminant-free, which is often not true. Frequently operators burning distillates ignore the fuel quality as a possible source of difficulties. This matter being also of concern in plants mainly operated on natural gas and where distillate fuel oil is the back-up fuel. Distillates may contain water, dirt and often trace metals such as sodium, vanadium and lead which can cause severe damages to the gas turbines. Sodium being very often introduced through contamination with seawater during the fuel storage and delivery chain to the plant, and in combination, or with air borne salt ingested by the combustion air. Excursions of sodium in treated crude or heavy fuel oil can occur during unnoticed malfunctions of the fuel treatment plant, when changing the heavy fuel provenience without centrifuge adjustment, or by inadequate fuel handling. For burning heavy fuel, treatment with oil-soluble magnesium fuel additive is state of the art to inhibit hot corrosion caused by vanadium. Air borne salts, sodium, potassium and lead contaminated distillates, gaseous fuels, washed and unwashed crude and residual oil can not be handled by simple magnesium based additives. The addition of elements like silicon and/or chromium is highly effective in reducing turbine blade hot corrosion and hot section fouling.

This paper describes field experience with the use of chromium containing fuel additive to reduce high temperature corrosion of hot section parts, as well as the interaction of oil-soluble chromium and magnesium-chromium additives on material behaviour of blades and vanes, and their economical and environmental aspects.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In