Full Content is available to subscribers

Subscribe/Learn More  >

CFD Analysis of a Complete Industrial Lean Premixed Gas Turbine Combustor

[+] Author Affiliations
P. Birkby, R. S. Cant, W. N. Dawes, A. A. J. Demargne, P. C. Dhanasekaran, W. P. Kellar, N. C. Rycroft, A. M. Savill

University of Cambridge, Cambridge, United Kingdom

R. L. G. M. Eggels, I. K. Jennions

Rolls-Royce plc, Coventry, United Kingdom

Paper No. 2000-GT-0131, pp. V002T02A050; 8 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME


The introduction of lean premixed combustion technology in industrial gas turbines has led to a number of interesting technical issues. Lean premixed combustors are especially prone to acoustically-coupled combustion oscillations as well as to other problems of flame stability such as flashback. Clearly it is very important to understand the physics that lies behind such behaviour in order to produce robust and comprehensive remedies, and also to underpin the future development of new combustor designs. Simulation of the flow and combustion using Computational Fluid Dynamics (CFD) offers an attractive way forward, provided that the modelling of turbulence and combustion is adequate and that the technique is applicable to real industrial combustor geometries. The paper presents a series of CFD simulations of the Rolls-Royce Trent industrial combustor carried out using the McNEWT unstructured code. The entire combustion chamber geometry is represented including the premixing ducts, the fuel injectors and the discharge nozzle. A modified k-ε model has been used together with an advanced laminar flamelet combustion model that is sensitive to variations in fuel-air mixture stoichiometry. Detailed results have been obtained for the non-reacting flow field, for the mixing of fuel and air and for the combustion process itself at a number of different operating conditions. The study has provided a great deal of useful information on the operation of the combustor and has demonstrated the value of CFD-based combustion analysis in an industrial context.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In