0

Full Content is available to subscribers

Subscribe/Learn More  >

Internal Flow Structure of a Pressure-Swirl Atomizer at Two Different Density Ratios

[+] Author Affiliations
Dexin Wang, Zhanhua Ma, San-Mou Jeng

University of Cincinnati, Cincinnati, OH

Michael A. Benjamin

Parker Hannifin Corporation, Mentor, OH

Paper No. 2000-GT-0119, pp. V002T02A039; 8 pages
doi:10.1115/2000-GT-0119
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME

abstract

The flow fields of large-scale simplex nozzles were investigated by 2-D back-scattered Laser Doppler Velocimetry (LDV). The internal flow structures of a simplex nozzle at two different density ratios of the working fluid and the ambient medium were obtained. The effects of the density ratio, Reynolds Number and orifice geometry on the flow structure were examined. The results revealed that the density ratio only affects the internal flow field in the region where the radius is smaller than the orifice radius. The density ratio and Reynolds Number have stronger influence on the internal flow structure of a sudden contraction and 45° expansion orifice configuration than on that of a 45° contraction and sudden expansion orifice configuration. When the density ratio is one, the effect of the contraction geometry from swirl chamber to orifice on the internal flow is very small compared to the effect of the expansion geometry.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In