Full Content is available to subscribers

Subscribe/Learn More  >

Computational Modelling of Self-Excited Combustion Instabilities

[+] Author Affiliations
Steve J. Brookes, R. Stewart Cant, Iain D. J. Dupere, Ann P. Dowling

University of Cambridge, Cambridge, United Kingdom

Paper No. 2000-GT-0104, pp. V002T02A024; 7 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME


It is well known that lean premixed combustion systems potentially offer better emissions performance than conventional non-premixed designs. However, premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems. Combustion instabilities (large-scale oscillations in heat release and pressure) have a deleterious effect on equipment, and also tend to decrease combustion efficiency. Designing out combustion instabilities is a difficult process and, particularly if many large-scale experiments are required, also very costly. Computational fluid dynamics (CFD) is now an established design tool in many areas of gas turbine design. However, its accuracy in the prediction of combustion instabilities is not yet proven.

Unsteady heat release will generally be coupled to unsteady flow conditions within the combustor. In principle, computational fluid dynamics should be capable of modelling this coupled process. The present work assesses the ability of CFD to model self-excited combustion instabilities occurring within a model combustor. The accuracy of CFD in predicting both the onset and the nature of the instability is reported.

Copyright © 2000 by ASME
Topics: Combustion , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In