0

Full Content is available to subscribers

Subscribe/Learn More  >

A High-Temperature Catalytic Combustor With Starting Burner

[+] Author Affiliations
Yusaku Yoshida, Kenshun Oyakawa

Japan Automobile Research Institute, Inc., Tsukuba, Ibaraki, Japan

Yukio Aizawa

Nippon Mitsubishi Oil Co., Yokohama, Kanagawa, Japan

Hiroshi Kaya

Tonen Co., Tokyo, Japan

Paper No. 2000-GT-0087, pp. V002T02A008; 9 pages
doi:10.1115/2000-GT-0087
From:
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME

abstract

A catalytic combustion system has high potential to achieve low NOx emission level. When this combustion system is applied to a gas turbine, the required combustor performance must be maintained over a wide range of operating conditions. These conditions range from cold starting to steady-state operation. Particularly during the initial stage of cold starting when the catalyst is not yet activated, the catalyst must be heated by some means.

This study proposes a new concept of a catalytic combustor with a direct heating system using vaporizing tube for starting burner in order to downsize the combustor and reduce the warm-up time during cold starts. The effectiveness of this concept is experimentally verified. Furthermore, NOx, CO, and HC emissions during startup can be reduced to a low level so as to achieve ultra-low pollution of the catalytic combustion over a wide range of operating conditions from cold start to steady-state operation.

This paper outlines the operation concept covering cold start, verification of the concept through the experiments with flame visualization in the combustor, spray characteristics, construction of the combustor, and combustion characteristics that show low pollution in various operating conditions of the catalytic combustor.

Copyright © 2000 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In