Full Content is available to subscribers

Subscribe/Learn More  >

Reduced NOx Diffusion Flame Combustors for Industrial Gas Turbines

[+] Author Affiliations
Alan S. Feitelberg, Venkat E. Tangirala

GE Corporate Research and Development, Niskayuna, NY

Richard A. Elliott, Roointon E. Pavri, Richard B. Schiefer

GE Power Systems, Schenectady, NY

Paper No. 2000-GT-0085, pp. V002T02A006; 13 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME


This paper describes reduced NOx, diffusion flame combustors that have been developed for both simple cycle and regenerative cycle MS3002 and MS5002 gas turbines. Laboratory tests have shown that when firing with natural gas, without water or steam injection, NOx emissions from the new combustors are about 40% lower than NOx emissions from the standard combustors. CO emissions are virtually unchanged at base load, but increase at part load conditions. Commercial demonstration tests have confirmed the laboratory results.

The standard combustors on both the MS3002 and MS5002 gas turbine are cylindrical cans, approximately 10.5 inches (27 cm) in diameter. A single fuel nozzle is centered at the inlet to each can and produces a swirl stabilized diffusion flame. The walls of the cans are louvered for cooling, and contain an array of mixing and dilution holes that provide the air needed to complete combustion and dilute the burned gas to the desired turbine inlet temperature. The MS3002 turbine is equipped with six combustor cans, while the MS5002 turbine is equipped with twelve combustors.

The new, reduced NOx emissions combustors (referred to as a “lean head end”, or LHE, combustors) retain all of the key features of the conventional combustors; the only major difference is the arrangement of the mixing and dilution holes in the cylindrical combustor cans. By optimizing the number, diameter, and location of these holes, NOx emissions can be reduced considerably. Minor changes are also sometimes made to the combustor cap. The materials of construction, pressure drop, and fuel nozzle are all unchanged.

The differences in NOx emissions between the standard and LHE combustors, as well as the variations in NOx emissions with firing temperature, are well correlated using turbulent flame length arguments. Details of this correlation are presented.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In