Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Steam-Based Gasification Processes for Topping Combustion in the Biomass Air Turbine (BAT) Cycle

[+] Author Affiliations
Jens Wolf, Jinyue Yan

Royal Institute of Technology, Stockholm, Sweden

Paper No. 2000-GT-0021, pp. V002T01A006; 10 pages
  • ASME Turbo Expo 2000: Power for Land, Sea, and Air
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Munich, Germany, May 8–11, 2000
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7855-2
  • Copyright © 2000 by ASME


In this work, steam-based gasification is investigated as a technology for fuel gas production for topping combustion in a biomass air turbine (BAT) cycle. For different systems, based on flash or conventional pyrolysis, the characteristics of the product gas quality are studied. The gas composition and the heating value of the produced gas are simulated by changing the main system parameters such as the moisture content of the biomass, the operating temperature and the composition of the biomass.

A model of the gasification process has been developed to evaluate each process. The model is based on mass conservation, the thermodynamic equilibrium of the water-gas-shift reaction and the methane yield during pyrolysis.

A gasification system with flash pyrolysis is identified as a promising technology for fuel gas production for use in topping combustion. The major features of the system are: first, the system provides a gas with a heating value of near to 16 MJ/Nm3 and small amounts of nitrogen gas; second, the application of a water knock out unit eliminates the influence of the water content in the feedstock on the product gas quality; third, the gasification process can be conducted in a tubular reactor within the furnace of the BAT cycle. This reduces the number of reactors and keeps the costs low.

Copyright © 2000 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In