0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Recovery System Control Strategy to Meet Multiple Transient Demands

[+] Author Affiliations
H. Perez-Blanco

Penn State University

Paul Albright

Lunaire Environmental, Williamsport, PA

Paper No. 2001-GT-0210, pp. V003T03A005; 8 pages
doi:10.1115/2001-GT-0210
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

As increasing power generation needs are met with gas turbines, it is clear that exhaust heat recovery presents a considerable opportunity to reduce operational costs and enhance thermal efficiency. Typically, a system may provide power, process heat and cooling. However, each utility may have a daily demand curve with peaks that do not necessarily coincide in time. Hence, it is necessary to devise strategies that ensure meeting the needs of each user continually while maintaining high thermal efficiencies. To study these situations, a dynamic model of a system comprising a gas turbine, a heat recovery steam generator, and absorption machine was developed. The transient response of the system was studied to determine the effects of sudden changes in demand. Two control strategies utilizing proportional integral controls were considered. The first strategy relied on operating the turbine to meet the power required by the consumer. When power demands were low and steam and cooling demands high, a secondary control strategy operated the turbine to meet the steam demands, thus maximizing the thermal efficiency of the systemThe first strategy relied on operating the turbine to meet the power required by the consumer. When power demands were low and steam and cooling demands high, a secondary control strategy operated the turbine to meet the steam demands, thus maximizing the thermal efficiency of the system. System control and stability were tested, including simulation of a power distribution network simulating resistive, capacitance and inductive loads.

Copyright © 2001 by ASME
Topics: Heat recovery

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In