0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Field and Flow Visualization Within the Stagnation Region of a Film Cooled Turbine Vane

[+] Author Affiliations
J. Michael Cutbirth, David G. Bogard

University of Texas at Austin, Austin, TX

Paper No. 2001-GT-0401, pp. V003T01A081; 9 pages
doi:10.1115/2001-GT-0401
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

To develop quality computational codes for the film cooling of a turbine vane, a detailed understanding is needed of the physical mechanisms of the mainstream-coolant interactions. In this study flow visualization, thermal profiles, and laser Doppler velocimetry measurements were used to define the thermal and velocity fields of the film cooled showerhead region of a turbine vane. The showerhead consisted of six rows of spanwise oriented coolant holes, and blowing ratios ranged from 0.8 to 2.5. Performances with low and high mainstream turbulence levels were tested. Coolant jets from the showerhead were completely separated from the surface even at relatively low blowing ratios. However, the interaction of the coolant jets from laterally adjacent holes created a barrier to the mainstream flow, resulting in relatively high adiabatic effectiveness.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In