Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Concave Curvature on Boundary Layer Transition Under High Free-Stream Turbulence Conditions

[+] Author Affiliations
Michael P. Schultz, Ralph J. Volino

United States Naval Academy, Annapolis, MD

Paper No. 2001-GT-0191, pp. V003T01A065; 10 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME


An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration Display FormulaK=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In