0

Full Content is available to subscribers

Subscribe/Learn More  >

The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets

[+] Author Affiliations
Jeffrey P. Bons, Rolf Sondergaard, Richard B. Rivir

Air Force Institute of Technology, Wright-Patterson AFB, OH

Paper No. 2001-GT-0190, pp. V003T01A064; 10 pages
doi:10.1115/2001-GT-0190
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

The effects of pulsed vortex generator jets on a naturally separating low pressure turbine boundary layer have been investigated experimentally. Blade Reynolds numbers in the linear turbine cascade match those for high altitude aircraft engines and industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets (30 degree pitch and 90 degree skew angle) are pulsed over a wide range of frequency at constant amplitude and selected duty cycles. The resulting wake loss coefficient vs. pulsing frequency data add to previously presented work by the authors documenting the loss dependency on amplitude and duty cycle. As in the previous studies, vortex generator jets are shown to be highly effective in controlling laminar boundary layer separation. This is found to be true at dimensionless forcing frequencies (F+) well below unity and with low (10%) duty cycles. This unexpected low frequency effectiveness is due to the relatively long relaxation time of the boundary layer as it resumes its separated state. Extensive phase-locked velocity measurements taken in the blade wake at an F+ of 0.01 with 50% duty cycle (a condition at which the flow is essentially quasi-steady) document the ejection of bound vorticity associated with a low momentum fluid packet at the beginning of each jet pulse. Once this initial fluid event has swept down the suction surface of the blade, a reduced wake signature indicates the presence of an attached boundary layer until just after the jet termination. The boundary layer subsequently relaxes back to its naturally separated state. This relaxation occurs on a timescale which is 5–6 times longer than the original attachment due to the starting vortex. Phase-locked boundary layer measurements taken at various stations along the blade chord illustrate this slow relaxation phenomenon. This behavior suggests that some economy of jet flow may be possible by optimizing the pulse duty cycle and frequency for a particular application. At higher pulsing frequencies, for which the flow is fully dynamic, the boundary layer is dominated by periodic shedding and separation bubble migration, never recovering its fully separated (uncontrolled) state.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In