Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90° Ribs

[+] Author Affiliations
Tong-Miin Liou

Feng Chia University, Taichung, Taiwan

Meng-Yu Chen, Meng-Hsiun Tsai

National Tsing Hua University, Hsinchu, Taiwan

Paper No. 2001-GT-0185, pp. V003T01A060; 10 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME


Laser-Doppler velocimetry and transient thermochromic liquid crystal measurements are presented to understand local fluid flow and surface heat transfer distributions in a rotating ribbed duct with a 180° sharp turn. The in-line 90° ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0×104 whereas the rotational number varied from 0 to 0.2. Results are compared with those of the rotating smooth duct flow in terms of maximum streamwise mean velocities (Umax/Ub) and turbulence intensities (u′max/Ub), skewness of mean velocity profiles, secondary flow pattern, turn-induced separation bubble, and turbulence anisotropy. Nusselt number ratio mappings are also provided on the leading and trailing walls. The relationships between the fluid flow and local heat transfer enhancement are also documented. It is found that the rotating ribbed duct flow provides higher Umax/Ub, u′max/Ub, and stronger total averaged secondary flow and, hence heat transfer is enhanced. Comparisons with heat transfer data published by other research groups are also made. Furthermore, simple linear correlations between regional averaged Nusselt number ratio and rotation number are developed.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In