0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions

[+] Author Affiliations
Kenneth W. Van Treuren

Baylor University, Waco, TX

Terrence Simon

University of Minnesota, Minneapolis, MN

Marc von Koller

Bundesamt fur Wehrtechnik und Beschaffung, Koblenz, Germany

Aaron R. Byerley

USAF Academy, Colorado Springs, CO

James W. Baughn

University of California, Davis, CA

Richard Rivir

Wright Laboratories, Wright-Patterson AFB, OH

Paper No. 2001-GT-0164, pp. V003T01A043; 10 pages
doi:10.1115/2001-GT-0164
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1% and 8–9% turbulence intensity of the approach flow (Free Stream Turbulence Intensity, FSTI) were investigated.

At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number.

At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8–9%. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to reestablish flow attachment.

This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated freestream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Though undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In