0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer

[+] Author Affiliations
Ronald S. Bunker, Jeremy C. Bailey

General Electric Company, Niskayuna, NY

Paper No. 2001-GT-0155, pp. V003T01A038; 11 pages
doi:10.1115/2001-GT-0155
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

An experimental study has been performed to investigate the effect of squealer cavity depth on the detailed distribution of convective heat transfer coefficients of a turbine blade tip surface. This paper presents full surface information on heat transfer coefficients within a blade cascade which develops an appropriate pressure distribution about an airfoil blade tip and shroud model. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.21, exit Mach number of 0.74, pressure ratio of 1.41, Reynolds number of 2.8•106, and total turning of about 100 degrees. The cascade inlet turbulence intensity level is 9%. Tip surface heat transfer coefficient distributions are first shown for a flat, square-edge tip with a clearance gap of 2.03 mm. Heat transfer distributions are then shown for full-perimeter squealer tip cavities having the same clearance gap above the squealer rim, and clearance-to-cavity depth ratios from 0.67 to 2. Regionally averaged heat transfer coefficients are analyzed to discern a relationship between tip heat transfer and cavity depth. Further tests demonstrate the effect of partial squealer rim oxidation, or material loss, on the surface heat transfer distributions.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In