Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes

[+] Author Affiliations
M. E. Taslim, Y. Pan

Northeastern University, Boston, MA

S. D. Spring

GE Aircraft Engines, Lynn, MA

Paper No. 2001-GT-0152, pp. V003T01A035; 10 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME


Airfoil leading-edge surfaces in state-of-the-art gas turbines, being exposed to very high gas temperatures, are often life-limiting locations and require complex cooling schemes for robust designs. A combination of convection and film cooling is used in conventional designs to maintain leading-edge metal temperatures at levels consistent with airfoil life requirements. Compatible with the external contour of the airfoil at the leading edge, the leading-edge cooling cavities often have complex cross-sectional shapes. Furthermore, to enhance the heat transfer coefficient in these cavities, they are often roughened on three walls with ribs of different geometries. The cooling flow for these geometries usually enters the cavity from the airfoil root and flows radially to the airfoil tip or, in the more advanced designs, enters the leading edge cavity from the adjacent cavity through a series of crossover holes in the wall separating the two cavities. In the latter case, the crossover jets impinge on a smooth leading-edge wall and exit through the showerhead film holes, gill film holes on the pressure and suction sides, and, in some cases, forms a cross-flow in the leading-edge cavity and is ejected through the airfoil tip hole. The main objective of this investigation was to study the effects that film holes on the target surface have on the impingement heat transfer coefficient. Available data in the open literature are mostly for impingement on a flat smooth surface with no representation of the film holes. This investigation involved two new features used in airfoil leading-edge cooling those being a curved and roughened target surface in conjunction with leading-edge row of film holes. Results of the crossover jets impinging on these leading-edge surface geometries with no film holes were reported by these authors previously. This paper reports experimental results of crossover jets impinging on those same geometries in the presence of film holes. The investigated surface geometries were smooth, roughened with large and small conical bumps as well as tapered radial ribs. A range of flow arrangements and jet Reynolds numbers were investigated and the results were compared to those of the previous study were no film holes were present. It was concluded that the presence of leading-edge film holes along the leading edge enhances the internal impingement heat transfer coefficients significantly. The smaller conical bump geometry in this investigation produced impingement heat transfer coefficients up to 35% higher than those of the smooth target surface. When the contribution of the increased area in the overall heat transfer is taken into consideration, this same geometry for all flow cases as well as jet impingement distances (Z/djet) provides an increase in the heat removal from the target surface by as much as 95% when compared with the smooth target surface.

Copyright © 2001 by ASME
Topics: Airfoils



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In