Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Turbulent Impingement Cooling

[+] Author Affiliations
Andreas Abdon, Bengt Sundén

Lund Institute of Technology, Lund, Sweden

Paper No. 2001-GT-0150, pp. V003T01A033; 9 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME


Simulations of turbulent impinging jet heat transfer for different nozzle configurations using Reynolds averaged governing equations and two-equation turbulence models have been conducted. The considered nozzle configurations are a square-edged orifice and a pipe exit. The results for a jet Reynolds number of 10000 and dimensionless nozzle-to-plate distance of 2 show that the heat transfer is well predicted for the pipe configuration but underpredicted for the orifice. The disagreement may be partly explained by underprediction of turbulence in the stagnation region and inaccurate treatment of the wall jet boundary layer transition. An investigation of the local heat transfer distribution for the orifice reveals two local maxima. These are related to an accelerating laminar boundary layer and the transition process of the wall jet, respectively, for the calculations. The application of a realizability constraint on the models leads to reduced turbulence levels, not only in the stagnation region, but also in the throttled flow of the orifice configuration. This improves the prediction of heat transfer and nozzle exit turbulence levels significantly.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In