0

Full Content is available to subscribers

Subscribe/Learn More  >

Boundary Layer and Loss Analysis in a Film Cooled Vane

[+] Author Affiliations
Giovanna Barigozzi, Giuseppe Benzoni, Antonio Perdichizzi

Università di Bergamo, Dalmine, BG, Italy

Paper No. 2001-GT-0136, pp. V003T01A022; 12 pages
doi:10.1115/2001-GT-0136
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME

abstract

The paper reports on boundary layer and wake flow analysis in a fully covered, film cooled vane without trailing edge ejection. The investigation, carried out in a low speed wind tunnel for linear cascades, has been mainly focused on the loss generation process due to coolant injection. The investigated region includes the rear part of pressure and suction side boundary layers and the wake region, up to a chord length downstream of the trailing edge. All measurements have been performed at mid-span, air being used as coolant flow. The same measurements have been also performed on a solid blade cascade, i.e. without cooling holes. Boundary layer profiles, integral parameters together with mean and turbulent quantities are presented. It results that the showerhead promotes transition on the suction side, giving rise to a thicker boundary layer all over the surface. On the pressure side, the boundary layer remains laminar up to the trailing edge, as high acceleration prevents transition. The wake region seems not to be strongly altered by the coolant injection. Boundary layer profiles and downstream 5-hole probe traverses have been used to compute loss coefficient distributions all over the blade surface and in the downstream region. Coolant injection strongly increases the profile losses along the suction side, while a much smaller contribution from the pressure side has been found. These increases are mainly due to coolant injection in the vane front part.

Copyright © 2001 by ASME
Topics: Boundary layers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In