Full Content is available to subscribers

Subscribe/Learn More  >

Study of Losses in a Leakage Flow Through the Passage of Shrouded Turbine Blades With Swirl Velocity

[+] Author Affiliations
Yumin Xiao, R. S. Amano

University of Wisconsin-Milwaukee, WI

Paper No. 2001-GT-0121, pp. V003T01A008; 7 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7852-1
  • Copyright © 2001 by ASME


In this paper the study of the flows over shrouded turbine blades with staggered-seals is presented by computing the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with a compressible non-linear k-ε turbulence model. The swirl of the blade is coupled into the calculation. A multi-zone technique is used to generate the grids in the complex flow channel. The calculation results show that the leakage flow rate in the seal-channel is dominated by the pressure difference. It was also observed that the circumferential momentum transfer in the channel is very slow in the region in front of the seal tooth. The major effect of the rotating blade is the increase of local pressure distribution along the shrouded tip clearance path. However, the swirl motion of the blade tip does not significantly change the flow pattern in the axial-radial plane.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In