Full Content is available to subscribers

Subscribe/Learn More  >

The Oxidation of Austenitic Stainless Steel Foils in Humidified Air

[+] Author Affiliations
James M. Rakowski

Allegheny Ludlum Corporation, Brackenridge, PA

Paper No. 2001-GT-0360, pp. V001T04A001; 5 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME


Austenitic stainless steels form a protective external chromium oxide scale when exposed to elevated temperatures in air. Laboratory testing of thin stainless steel foil specimens demonstrates that the presence of water vapor decreases the time required for breakaway oxidation to occur. Accelerated oxidation begins after the end of an incubation period, the length of which is affected by the amount of water vapor present. Significant changes in scale microstructure accompany the transition from parabolic to accelerated oxidation.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In