Full Content is available to subscribers

Subscribe/Learn More  >

Details of Axial-Compressor Shrouded Stator Cavity Flows

[+] Author Affiliations
Steven R. Wellborn

Rolls-Royce, Indianapolis, IN

Paper No. 2001-GT-0495, pp. V001T03A078; 11 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME


Data that reveal the structure and character of the flow in and near the cavities of compressor shrouded stators are reviewed. Results were obtained from low-speed multistage compressor measurements and simulations and generic high-speed cavity simulations. The experimental measurements were acquired with slow and fast response instrumentation. The numerical simulations were collected with two different flow solvers. The data are presented to provide compressor designers some indication of the complexities of the flow within shrouded stator cavities and to provide a datum for further studies on more complex geometries and flow conditions.

The data suggest surprisingly similar flow structures within most cavities including spatial and temporal flow field variations. In general, the flow in the cavities involved fluid moving in the circumferential direction with lower momentum than powerstream fluid. The difference in momentum is adjusted through a shear layer in the radial direction near the powerstream/cavity interface. Circumferential variations in flow properties also exist, the most prominent being caused by the upstream potential influence of the downstream blade. This influence caused the fluid within the cavities near the leading edges of the airfoils to be driven radially inward relative to fluid near mid-pitch. Some data are presented that suggest powerstream secondary flows dictate which fluid particles are ingested in the downstream cavity across the stator pitch. Vortical flow structures, similar to those set up by a driven cavity, dominate the axial variations in flow. The position and structure of these vortical structures are dependent upon the powerstream flow field and the cavity geometry.

Examining some interdependencies between cavity flow parameters concludes discussions of cavity flow field characteristics. A known relation between cavity leakage amount and tangential velocity is reiterated. Cavity rotational speed and stator exit swirl are also shown to influence the cavity tangential velocity. Increasing rotational speed tends to increase the tangential velocity through the cavity. Increasing the stator exit swirl reduces the tangential velocity increase.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In