0

Full Content is available to subscribers

Subscribe/Learn More  >

Midspan Flow-Field Measurements for Two Transonic Linear Turbine Cascades at Off-Design Conditions

[+] Author Affiliations
D. B. M. Jouini, S. A. Sjolander

Carleton University, Ottawa, ON, Canada

S. H. Moustapha

Pratt & Whitney Canada Inc., Longueuil, QC, Canada

Paper No. 2001-GT-0493, pp. V001T03A077; 15 pages
doi:10.1115/2001-GT-0493
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME

abstract

The paper presents detailed mid-span experimental results from two transonic linear turbine cascades. The blades for the two cascades were designed for the same service and differ mainly in their leading-edge geometries. One of the goals of the study was investigate the influence of the leading-edge metal angle on the sensitivity of the blade to positive off-design incidence. Measurements were made for incidence values of −10.0°, 0.0°, +4.5°, +10.0°, and +14.5° relative to design incidence. The exit Mach numbers varied roughly from 0.5 to 1.2 and the Reynolds numbers from about 4×105 to 106. The measurements include the midspan losses, blade loadings and base pressures. In addition, the axial-velocity-density ratio (AVDR) was extracted for each operating point The AVDR was found to vary from about 0.98 at −10.0° of incidence to about 1.27 at +14.5°. Thus, the data set also provides some evidence of the influence AVDR on axial turbine blade performance.

Detailed experimental results for turbine blade performance at off-design incidence are very scarce in the open literature, particularly for transonic conditions. Among other things, the present results are intended to expand the database available in the open literature. To this end, the key aerodynamic results are presented in tabular form, along with the detailed geometry of the cascades. The results could be used in the development of new or improved correlations for use in the early stages of design. They could also be used to evaluate the ability of current CFD codes to capture reliably the variation in losses and other aerodynamic quantities with variations in blade incidence.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In