0

Full Content is available to subscribers

Subscribe/Learn More  >

Active Aerodynamic Control of Multi-Stage Axial Compressor Instability and Surge by Dynamically Adjusting the Stator Blades

[+] Author Affiliations
M. T. Schobeiri

Texas A&M University, College Station, TX

Paper No. 2001-GT-0479, pp. V001T03A067; 10 pages
doi:10.1115/2001-GT-0479
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME

abstract

A method of active aerodynamic control and prevention of axial compressor instability and surge is presented. The method is based on dynamically adjusting the stator blades to the compressor interstage unsteady aerodynamics. While concentrating on the active aerodynamic control and prevention of stall, it does not deal with control specific procedures and algorithms. Using a row-by-row dynamic prediction procedure, the dynamic state of the compressor is determined by the blade flow deflection, which is represented by a time dependent modified diffusion factor. For the case that an adverse dynamic operation condition causes the diffusion factor to exceed certain thresholds, the stator blades are adjusted by changing their stagger angle, thus shifting the surge limit beyond its design point. As a result, the compressor can operate at much lower mass flow rates than the steady state performance map allows. The active aerodynamic control method is applied to a single-spool, two shaft power generation gas turbine engine with a multistage compressor. Two complete dynamic engine simulation computations are performed. In the course of the first simulation, the stator-row stagger angles are kept at their design point and the compressor is forced into an unstable operating mode. In the second simulation, under the same adverse engine operation conditions, the stator blade rows are dynamically adjusted thus preventing the inception of instability and surge.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In