0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of 3D Flow Field Structure in Turbine Cascade With Bowed Blades

[+] Author Affiliations
Songtao Wang, Zhongqi Wang, Guotai Feng

Harbin Institute of Technology, Harbin, China

Paper No. 2001-GT-0442, pp. V001T03A064; 10 pages
doi:10.1115/2001-GT-0442
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME

abstract

The differences of flow field in bowed blade cascade and that in straight blade cascade are systematically studied in this paper. To bow a blade means to change its geometric boundary condition. This change not only affect the pressure distribution along the blade profile exit Mach number but also has great effect on the original position and development of the passage vertex. All of the changes mentioned above have great influence on the loss.

Numerical simulation result showed that blade bowing can decrease the cross-pressure gradient near the end wall. This trend will be more obvious with the increase of the bow angle. The pressure gradient decrease is beneficial to weaken the passage vortex strength and reduces the secondary loss near the endwalls. In addition, Pressure gradient from endwalls to midspan can be established near suction surface in positively bowed blade. With the increase of bow angle, this C-type pressure distribution is remarkable. It is also found that this C-type pressure distribution will influence the position of corner vortex near the suction surface and will also influence the position and size of the passage vortex. Blade bowing also has great influence on the position of the saddle point near the leading edge and the separated line of the horseshoe vortex. It is found that the position of the saddle point and the separated line of both legs of the horseshoe vortex move forward in a positively bowed blade.

The passage vortex structure in bowed cascade is also presented. It can be concluded that a bowed blade can make the passage vortex stable and helps change its structure from loose to compact. Blade bowing is also beneficial to limit the influence domain of the unstable passage vortex core by the stable limit cycle.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In