Full Content is available to subscribers

Subscribe/Learn More  >

Boundary Layer Development in the BR710 and BR715 LP Turbines: The Implementation of High Lift and Ultra High Lift Concepts

[+] Author Affiliations
R. J. Howell, H. P. Hodson, V. Schulte

Cambridge University, Cambridge, UK

Heinz-Peter Schiffer, F. Haselbach

Rolls-Royce Deutschland, GmbH, Dahlewitz, Germany

N. W. Harvey

Rolls-Royce plc, Derby, UK

Paper No. 2001-GT-0441, pp. V001T03A063; 8 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME


This paper describes a detailed study into the unsteady boundary layer behaviour in two high lift and one ultra high lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high lift and ultra high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles.

Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra high-lift profile represents a 12% reduction in blade numbers compared to the original BR715 turbine.

The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behaviour. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In