Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Aerodynamical Blade Row Interaction in a New Multistage Research Turbine: Part 2 — Numerical Investigation

[+] Author Affiliations
Wolfgang Höhn

MTU Aero Engines, München, Germany

Ralf Gombert, Astrid Kraus

University of Stuttgart, Stuttgart, Germany

Paper No. 2001-GT-0307, pp. V001T03A011; 10 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME


This paper is the second part of a two part paper, which describes in part one the experimental setup and results of a new multistage turbine. Part two presents results of unsteady viscous flow calculations based on cold flow experiments of that three stage low pressure turbine. The present paper emphasizes the investigation of stator-stator interaction of a low pressure turbine section of a commercial jet engine. Different positions for the second and third stator are studied numerically and experimentally with respect to the blade row interaction, unsteady blade loading and unsteady boundary layer effects.

A time accurate Reynolds averaged Navier-Stokes solver is applied for the computations. Turbulence is modeled using the Spalart-Allmaras one equation model turbulence model and the influence of modern transition models on the unsteady flow predictions is investigated. The integration of the governing equations in time is performed by a four stage Runge-Kutta scheme, which is accelerated by a two grid method in the viscous boundary layer around the blades and alternatively by a dual time stepping method. At the inlet and outlet reflecting or non-reflecting boundary conditions are used. The quasi 3D calculations are conducted on a stream surface around midspan allowing a varying stream tube thickness.

In particular, the flow field with respect to time averaged and unsteady quantities such as surface pressure, vorticity, unsteady velocity field and skin friction are compared with the experiments conducted in the cold air flow test rig.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In