Full Content is available to subscribers

Subscribe/Learn More  >

Clocking Effects in a 1.5 Stage Axial Turbine: Steady and Unsteady Experimental Investigations Supported by Numerical Simulations

[+] Author Affiliations
U. Reinmöller, B. Stephan, S. Schmidt, R. Niehuis

RWTH Aachen, University of Technology, Aachen, Germany

Paper No. 2001-GT-0304, pp. V001T03A009; 11 pages
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME


The interaction between rotor and stator airfoils in a multistage turbomachine causes an inherently unsteady flow field. In addition, different relative circumferential positions of several stator rows and rotor rows, respectively, have an influence on the flow behaviour in terms of loss generation, energy transport and secondary flow. The objective of the presented study is to investigate the effects of stator airfoil clocking on the performance of an 1-1/2 stage axial cold air turbine. The investigated axial turbine consists of two identical stators. The low aspect ratio of the blades and their prismatic design leads to a three-dimensional outlet flow with a high degree of secondary flow phenomena. Nevertheless, the small axial gaps between the blade rows are responsible for strong potential flow interaction with the radial wake regions in the measurement planes. Consequently, parts of the wakes of the first stator are clearly detected in the rotor outlet flow.

To give an overview of the time-averaged flow field, measurements with pneumatic probes are conducted behind each blade row at ten different clocking-positions of the second stator. Further, an optimised clocking position was found due to a minimum in pressure loss behind the 2nd stator. The unsteady measurements are carried out with hot-wire probes for three selected stator-stator positions. Animations of selected flow properties show the influence of different circumferential positions of the second stator on the unsteady flow behaviour and secondary flow field. In addition and compared with experimental results three-dimensional unsteady viscous flow computations are performed.

Copyright © 2001 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In