0

Full Content is available to subscribers

Subscribe/Learn More  >

Management of High Speed Machinery Signatures to Meet Stealth Requirement in the Royal Swedish Navy Visby Class Corvette (YS 2000)

[+] Author Affiliations
Hans Liwång, Lars Pejlert

Swedish Defence Materiel Administration, FMV

Steve Miller, Jan-Erik Gustavsson

Cincinnati Gear Company

Paper No. 2001-GT-0214, pp. V001T02A001; 10 pages
doi:10.1115/2001-GT-0214
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME

abstract

Over the years, the word stealth has been used more and more when discussing design and operational characteristics in military applications. New and more challenging techniques are constantly being applied to minimize signatures and thus hinder or delay detection and identification.

The Visby Class Corvette is a multipurpose combat ship with 600 tons displacement. The hull is a sandwich construction of a PVC core with carbon fiber/vinyl laminate. The propulsion system consists of two identical CODOG machinery systems, each driving a KaMeWa 125 size Water Jet Unit.

The Ship has special requirements for all signatures, i.e. Radar-, Hydro acoustics-, IR- and Magnetic Signature. The High Speed Machinery is twin Honeywell TF50A Gas Turbines, cantilever mounted side by side on the Main Reduction Gearbox housing. The Main Reduction Gearbox is a dual input high performance marine Gearbox designated MA - 107 SBS, designed and manufactured by Cincinnati Gear Co. The Low Speed Machinery is a MTU 16 V 2000 TE90 Diesel Engine connected to the MRG by a power take in shaft.

Combustion Air for the Gas Turbines is ducted from the shipside Air Inlet Screen (radar screen) via 3-stage separating filters. The Exhausts from the twin Gas Turbines are combined into one Exhaust Pipe and ducted to the ship transom above the Water Jet stream.

Very little can be changed in the Gas Turbine, but high quality such as well balanced rotating part contributes to reduce the signatures. However, the main work has to be accomplished by the building shipyard in cooperation with the Gas Turbine manufacturer. The Main Reduction Gearbox is more available for changes to reduce signatures, but even for the Gearbox the building shipyard has to take design and installation measures.

The HSM installation consist mainly of the Gas Turbine Engine, the Main Reduction Gear, Water Jets Unit and surrounding equipment such as main shaft, bearings and so on. The emphasis in this paper is on the GT, MRG and their effect on some of the more well known signatures i.e. RCS, IR, Hydro acoustics and Magnetic. Also some design measures are discussed.

Copyright © 2001 by ASME
Topics: Machinery , Navy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In