0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of Pulse Detonation Combustion to Turbofan Engines

[+] Author Affiliations
M. A. Mawid, T. W. Park

Engineering Research and Analysis Company

B. Sekar, C. Arana

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. 2001-GT-0448, pp. V001T01A006; 22 pages
doi:10.1115/2001-GT-0448
From:
  • ASME Turbo Expo 2001: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • New Orleans, Louisiana, USA, June 4–7, 2001
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7850-7
  • Copyright © 2001 by ASME

abstract

The potential performance gain of utilizing pulse detonation combustion in the bypass duct of a turbofan engine for possible elimination of the traditional afterburner was investigated in this study. A pulse detonation turbofan engine concept without an afterburner was studied and its performance was assessed. The thrust, SFC and specific thrust of a conventional turbofan with an afterburner and the new pulse detonation turbofan engine concept were calculated and compared. The pulse detonation device performance in the bypass duct was obtained by using multidimensional CFD analysis. The results showed that significant performance gains can be obtained by using the pulse detonation turbofan engine concept as compared to the conventional afterburning turbofan engine. In particular, it was demonstrated that for a pulse detonation bypass duct operating at a frequency of 100 Hz and higher, the thrust and specific thrust of a pulse-detonation turbofan engine can nearly be twice as much as those of the conventional afterburning turbofan engine. SFC was also shown to be reduced. The effects of fuel-air mixture equivalence ratio and partial filling on performance were also predicted. However, the interaction between pulse detonation combustion in the bypass duct and the engine fan, for potential fan stall, and engine nozzle have not been investigated in this study.

Copyright © 2001 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In