0

Full Content is available to subscribers

Subscribe/Learn More  >

Pressure Drop Analysis of a Pressure-Channel Type SuperCritical Water-Cooled Reactor

[+] Author Affiliations
A. Dragunov, W. Peiman

University of Ontario Institute of Technology, Oshawa, ON, Canada

Paper No. IMECE2013-67383, pp. V015T16A017; 11 pages
doi:10.1115/IMECE2013-67383
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 15: Safety, Reliability and Risk; Virtual Podium (Posters)
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5644-4
  • Copyright © 2013 by ASME

abstract

Pressure drop calculation and temperature profiles associated with fuel and sheath are important aspects of a nuclear reactor design. The main objective of this paper is to determine the pressure drop in a fuel channel of a SuperCritical Water-cooled Reactor (SCWR) and to calculate the temperature profile of the sheath and the fuel bundles. One-dimensional steady-state thermal-hydraulic analysis was conducted. In this study, the pressure drops due to friction, acceleration, local losses, and gravity were calculated at supercritical conditions.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In