0

Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Modeling Method to Evaluate Fleet Safety Performance of New Vehicle Designs

[+] Author Affiliations
Randa Radwan Samaha, Dhafer Marzougui, Chongzhen Cui, Cing-Dao (Steve) Kan, Azim Eskandarian

George Washington University, Ashburn, VA

Priyaranjan Prasad

Prasad Engineering, LLC, Plymouth, MI

Paper No. IMECE2013-66285, pp. V013T14A041; 13 pages
doi:10.1115/IMECE2013-66285
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME

abstract

A methodology for Evaluating Fleet, i.e., self and partner, Protection (EFP) of new vehicle designs is developed through a systems modeling approach driven by structural and occupant modeling and real world crash and full scale test data. The EFP methodology consists of a virtual model simulating the real world crash environment (i.e., different types of vehicles, impact velocities, impact directions, impact types, etc.). A concept or new vehicle design could be introduced into this model to evaluate the safety of its occupants and those of other vehicles with which it is involved in crashes. The initial implementation of EFP methodology is to frontal crashes where the modeled crash configurations are derived from a new crash taxonomy based on real world structural engagement. Simulation data to drive the methodology is obtained from finite element structural models of the vehicles. Occupant responses are based on three dimensional articulated rigid body models of the occupant and the passenger compartment. The occupant is restrained by seat belts and airbags and the structural deformations and kinematics of the passenger compartment needed to drive the occupant models are predicted by the finite element structural models. Both the structural and the occupant models are subjected to validation and robustness checks for the modeled crash configurations. The aggregate of injury risk across vehicle classes, impact speeds, occupant sizes, and crash configurations, weighted by relative frequency of the specific event in real world crashes, is used as a measure of overall societal safety. Results from a proof-of-concept application are presented.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In