0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of the Dynamic Response of a Lumbar Spine Functional Unit Under Axial Compressive High Loading Rate: Outcome on the Axial Disc Bulge and its Relation to the Load Magnitude

[+] Author Affiliations
Chandrashekhar K. Thorbole

Thorbole Simulation Technologies LLC, Springdale, AR

M. Jorgensen, H. M. Lankarani

Wichita State University, Wichita, KS

Paper No. IMECE2013-66019, pp. V013T14A039; 14 pages
doi:10.1115/IMECE2013-66019
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME

abstract

Human lumbar spine tolerance to the compressive impact loading is less when compared to its tolerance to the perpendicular dynamic load. The dynamic response of the functional spinal unit in compressive loading is governed by the viscoelastic behavior of the IVD (Intervertebral disc). The axial bulge of the disc is the result of viscoelastic nature of the nucleus which tends to swell under high loading rate. This characteristic causes the end-plate to bow into the cancellous bone as it is supported by the strong cortical bone on its periphery. The end-plate is one of the important elements in the functional spinal unit if failed results disc material to progress into the vertebral body beneath it.

This paper quantifies the axial bulge of the end-plate under dynamic compressive load using Finite Element Method. A simple validated axis symmetry FE model is employed to identify the most vulnerable lumbar spine level using the sensitivity analysis. This is followed by the development of more detailed FE model with viscoelastic modeling of the nucleus and the annulus. The dynamic load is applied on the superior vertebral body which follows triangular loading profile with 50ms rise time. The axial bulge is quantified at the center of the disc as this is the location of maximum deflection and local stress in the end-plate. The ratio of axial bulge and the total FSU deflection is plotted against magnitude of load applied to gain insight regarding the relation between load magnitude and axial bulge.

This study will complement the research on end-plate fracture mechanism and its role in causing the burst fracture based on the magnitude of load.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In