Full Content is available to subscribers

Subscribe/Learn More  >

Optimization Methodology for Innovative Automotive Crash Absorbers

[+] Author Affiliations
Luca D’Agostino, Luca Bertocchi, Luca Splendi, Antonio Strozzi

Università degli Studi di Modena e Reggio Emilia, Modena, Italy

Patrizio Moruzzi

Ferrari S.p.A., Maranello, MO, Italy

Paper No. IMECE2013-64541, pp. V013T14A035; 8 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME


The simulation of vehicle crash impacts requires accurate and computationally expensive Finite Element analysis. An effective procedure consists in considering and establishing which improvement can be made on an equivalent sub-model of the full vehicle. In this way, all the analysis can be performed on smaller models, thus saving computational time. A full vehicle simulation is required only at the end of the design process to validate the results of the sub-model analysis.

A software based on a genetic optimization algorithm has been developed in order to optimize the geometrical parameters of a variable-thickness crash absorber. A numerical study on the folding of thin-walled aluminum tubes with variable-thickness has been performed in order to achieve the maximum energy absorption-to-mass ratio. Moreover, the performance in terms of folding length and crush load peaks have been considered.

Different optimization strategies have been implemented to find out which solution guarantees the achievement of the optimization target with the lowest computational cost.

The results show how the approach proposed by the authors allows an efficient variable-thickness crash absorber to be obtained. In fact it performs better in term of crash behavior and energy dissipation-to-mass ratio, with respect to the original constant_thickness model.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In