0

Full Content is available to subscribers

Subscribe/Learn More  >

Prototyping a New Lightweight Passenger Seat

[+] Author Affiliations
C. Yüce, F. Karpat, N. Yavuz, Ö. Kaynaklı

Uludag University, Bursa, Turkey

E. Dolaylar, G. Şendeniz

Grammer A.Ş., Bursa, Turkey

Paper No. IMECE2013-64381, pp. V013T14A034; 10 pages
doi:10.1115/IMECE2013-64381
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME

abstract

Profitability is the key concern for transport companies. Costs are increased due to the rising fuel prices and technological investments. As well as new legal restrictions on the emission rates have forced the sector different fuel efficient technologies. Reducing weight is one of the most important methods of improving fuel efficiency and cutting CO2 emissions. Accordingly lighter, more fuel efficient, environmentally sustainable and safety vehicles are in the priority list of European authorities. And also the future of hybrid and electric vehicles depends on the lightweighting. The seat structure was chosen as the area for study which presented the best opportunity for weight reduction by the use of new materials. A seat provides comfort and safety of an occupant’s while travelling. In the event of crash, the passenger seat is exposed many different forces. For this reason it should be designed sufficient strength and stiffness. Therefore an optimized seat design should be aesthetically pleasing, ergonomic, light and meet the safety requirements. Seats play an important role in mass of buses and coaches due to number of seats per vehicle. In this project, finite element analysis, together with topology and free-size optimization is used to design a lightweight passenger seat for new generation commercial vehicles.

The seat CAD models were created with CATIA V5 and then imported into HyperMesh for finite element model creation and analysis. Results from the nonlinear analysis provide an accurate prediction of the material yielding and load path distribution on the seat structural frame components. In the end, the verification tests which were determined by ECE are applied the new seat and results were compared with the FEA results.

In this study, the lightweight passenger seat prototypes have developed. High strength steel and fiber-reinforced plastic parts are used. An overall 20% weight reduction is achieved including the structural frame, cushion, armrest, and pillar. And also the new passenger seat provides ECE safety norms.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In