0

Full Content is available to subscribers

Subscribe/Learn More  >

Driveline Dynamics Simulation and Analysis of the Dry Clutch Friction-Induced Vibrations in the Eek Frequency Range

[+] Author Affiliations
Adolfo Senatore, Vincenzo D’Agostino

University of Salerno, Fisciano, SA, Italy

Daniel Hochlenert, Utz von Wagner

Technische Universität Berlin, Berlin, Germany

Paper No. IMECE2013-64597, pp. V013T14A024; 9 pages
doi:10.1115/IMECE2013-64597
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME

abstract

Vibrations that arise during the slip phase of the clutch in the driveline of a motor vehicle yield to poor ride quality and result in discomfort and noise. The control systems in modern automated manual transmission systems couldn’t provide good improvement of vehicle longitudinal dynamics during gearshifts without a deep knowledge of the driveline model and its stiffness and damping parameters, along with the frictional conjunction between its main subparts.

In this paper an original 5-degree of freedom mathematical model of the dry clutch mechanism is presented with the intention of studying the excitation in a passenger car driveline of torsional vibration by frictional actions during the slip phase of the engagement. Furthermore, the analysis aims to deepen about the coupling between pressure plate wobbling and torsional motions in order to improve the current understanding of the excitation mechanisms in the frequency region of the so-called “eek noise”, 250–500 Hz. The results of this work substantiate that enhancing of torsional motion in the characteristic frequency range of the “eek sound” occurs even regardless of the rigid wobbling motion of the pressure plate and underline the need to include the non-linear characteristic of the clutch cushion spring in the simulation of such a phenomenon.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In