0

Full Content is available to subscribers

Subscribe/Learn More  >

Soot Load Sensing in a Diesel Particulate Filter via Electrical Capacitance Tomography

[+] Author Affiliations
Ragibul Huq, Sohel Anwar

Indiana University Purdue University Indianapolis, Indianapolis, IN

Paper No. IMECE2013-62819, pp. V013T14A005; 9 pages
doi:10.1115/IMECE2013-62819
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 13: Transportation Systems
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5642-0
  • Copyright © 2013 by ASME

abstract

Diesel engines are widely used in heavy duty trucks and off road vehicles due to their fuel efficiency and high power outputs. Environmental regulatory agencies have pushed ever stringent regulations on all internal combustion engines, including Diesel engines on gaseous as well as particulates (soot) emissions. In order to meet today’s and tomorrow’s stringent emission requirements, modern diesel engines are equipped with diesel particulate filters (DPF’s), as well as on-board technologies to evaluate the status of DPF. In course of time, particulate matter (soot) will be deposited inside the DPFs which tend to clog the filter and hence generate a back pressure in the exhaust system, negatively impacting the fuel efficiency. To remove the soot build-up, regeneration (active or passive) of the DPF must be done as an engine exhaust after treatment process at pre-determined time intervals. Since the regeneration process consume fuel, a robust and efficient operation based on accurate knowledge of the particulate matter deposit (or soot load) becomes essential in order to keep the fuel consumption at a minimum. In this paper, we propose a sensing method for a DPF that can accurately measure in-situ soot load using Electrical Capacitance Tomography (ECT). Simulation results show that the proposed method offers an effective way to accurately estimate the soot load in DPF. The proposed method is expected to have a profound impact in improving overall PM filtering efficiency (and thereby fuel efficiency), and durability of a Diesel Particulate Filter (DPF) through appropriate closed loop regeneration operation.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In