Full Content is available to subscribers

Subscribe/Learn More  >

Towards the Synthesis of Product Knowledge Across the Lifecycle

[+] Author Affiliations
Paul Witherell, Boonserm Kulvatunyou, Sudarsan Rachuri

National Institute of Standards and Technology, Gaithersburg, MD

Paper No. IMECE2013-65220, pp. V012T13A071; 11 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 12: Systems and Design
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5641-3


Product lifecycle management is an important aspect of today’s industry, as it serves to facilitate information exchange and management between most, if not all, stages of a product’s existence. As exchanged product information is inevitably subjected to multiple transformations and derivations, information transparency between lifecycle stages can be difficult to achieve. Synthesizing representations of product information across the lifecycle, by creating a lifecycle-stage-independent platform, can provide transparent access to information for both upstream and downstream applications.

In this paper, we review previous and ongoing efforts using ontologies as a means to support information integration and interoperability throughout the lifecycle of a product. We propose that existing efforts can be leveraged to create an upper-tiered ontology for product information. The resulting ontology, a core model for product lifecycle information, would support the synthesis and exchange of product information across lifecycle stages, improving access to this information and facilitating lifecycle thinking.

We discuss the use of ontologies as a means to create and link paradigm-independent representations. We discuss the translations that product information may face when integrated through ontologies, and the extent to which the integrity of the information can be preserved across the lifecycle. We investigate the role of information quality in the exchange and evolution of product information across the lifecycle. Finally, we discuss the application of an upper-tiered ontology, particularly the advantages offered by increased transparency and interoperability, as a means to support lifecycle thinking for mitigating a product’s sustainability impact.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In