0

Full Content is available to subscribers

Subscribe/Learn More  >

Using the Bootstrap Method to Determine Uncertainty Bounds for Change Point Utility Bill Energy Models

[+] Author Affiliations
James Clay Tyler, T. Agami Reddy

Arizona State University, Tempe, AZ

Paper No. IMECE2013-62209, pp. V011T06A021; 5 pages
doi:10.1115/IMECE2013-62209
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 11: Emerging Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5640-6
  • Copyright © 2013 by ASME

abstract

Statistical inverse modeling of energy use in buildings and of HVAC&R equipment and systems has been widely researched, and are fairly well ingrained in the profession. However, there are still a few nagging issues; one of them is related to the accuracy in estimating model prediction uncertainty bands at a pre-specified confidence level. This issue is important since it bears directly on the risk associated with the identified energy savings. While several papers have been published dealing with uncertainty in statistical models, the non-heteroscedascity and the non-gaussian behavior of the residuals are problematic to handle using classical statistical equations of model prediction uncertainty. This paper proposes and illustrates the use of the Bootstrap method as a robust and flexible alternative approach to determining uncertainty bands for change point model predictions identified from utility bills. In essence, the bootstrap method works by taking a data set and resampling it with replacement. In the case of utility bill analysis, one starts with 12 data points representing energy use for each month of the year. Such samples are repeatedly generated to produce a large (say, m) number of synthetic data sets from which m different change point models can be identified. These m models are used to make predictions at any pre-specified outdoor temperature, and the 95% (or any other) prediction interval bands can be determined non-parametrically from the m data predictions. This paper fully describes and illustrates this approach along with a case study example.

Copyright © 2013 by ASME
Topics: Uncertainty

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In