Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Studies on Performance and Emissions of Two Stroke and Four Stroke Copper Coated Spark Ignition Engines With Methanol Blended Gasoline

[+] Author Affiliations
M. V. S. Murali Krishna, Ch. Indira Priyadarsini

Chaitanya Bharathi Institute of Technology, Hyderabad, AP, India

P. Ushasri

Osmania University, Hyderabad, AP, India

P. V. K. Murthy, D. Baswaraju

Jaya Prakash Narayan Educational Society Group of Institutions, Mahabubnagar, AP, India

Paper No. IMECE2013-62264, pp. V011T06A011; 10 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 11: Emerging Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5640-6
  • Copyright © 2013 by ASME


Investigations were carried out to evaluate the performance of two stroke and four stroke of single cylinder, spark ignition (SI) engines having copper coated engine [CCE, copper-(thickness, 300 μ)] coated on piston crown and inner side of cylinder head] provided with catalytic converter with sponge iron as catalyst with methanol blended gasoline (80% gasoline and 20% methanol by volume) and compared with conventional engine (CE) with pure gasoline operation.

Performance parameters — brake thermal efficiency (BTE), exhaust gas temperature (EGT), volumetric efficiency and exhaust emissions of carbon monoxide (CO) and un-burnt hydrocarbon (UBHC) were determined with different values of brake mean effective pressure (BMEP) of the engine and compared with one over the other of two stroke and four stroke SI engine with different versions of the engine.

Formaldehyde and acetaldehyde emissions were measured by 2, 4 dinitrophenyl hydrazine (2,4 DNPH) method at peak load operation of CE and CCE of two-stroke and four-stroke SI engine. The engine was provided with catalytic converter with sponge iron as catalyst. There was provision for injection of air into the catalytic converter.

Brake thermal efficiency increased with methanol blended gasoline with both versions of the engine. CCE showed improvement in the performance when compared with CE with both test fuels. Four-stroke engine decreased exhaust emissions effectively in comparison with two-stroke engine with both versions of the engine. Catalytic converter with air injection significantly reduced exhaust emissions with different test fuels on both configurations of the engine.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In