Full Content is available to subscribers

Subscribe/Learn More  >

Rotary Multimodal Energy Harvesting Device

[+] Author Affiliations
Miles Larkin, Yonas Tadesse

The University of Texas at Dallas, Richardson, TX

Paper No. IMECE2013-65189, pp. V011T06A007; 9 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 11: Emerging Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5640-6
  • Copyright © 2013 by ASME


In this paper, a new multimodal energy harvesting device consisting of two transduction mechanisms and having unique properties at various operating modes is presented. The hybrid system includes electromagnetic and piezoelectric energy harvesting technologies, and uses linear motion and impact forces from human motion for energy harvesting. The device is based on an unbalanced electromagnetic rotor made of three beams of piezoelectric material that have magnets attached to the ends. The device is to be worn on the legs or arms of a person. Linear motion, from the arms or legs swinging, causes the rotor to spin and the magnets to pass over the coils. Impact forces, from stepping, induce stress on the piezoelectrics which generates voltage across the electrode. The results of several numerical simulations are presented. For the piezoelectric beams, numerical simulations were done to find the deflection, stress, optimum operating frequency, and mode shapes taking into account environmental conditions. For the electromagnetic generation, numerical simulations were done to find the optimal load resistance and power generation for several different orientations. Other design related issues will also be investigated to fully realize the device in real world applications.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In