0

Full Content is available to subscribers

Subscribe/Learn More  >

Pressure Drop and Heat Transfer Characteristics of Pin Fin Enhanced Microgaps in Single Phase Microfluidic Cooling

[+] Author Affiliations
Zhimin Wan, Yogendra K. Joshi

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2013-65618, pp. V010T11A086; 8 pages
doi:10.1115/IMECE2013-65618
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

Three dimensional (3D) stacking of semiconductor chips is an emerging technology which promises improved electrical performance including improved bandwidth, reduced wire interconnection lengths, and reduced signal delay. However, due to the higher power density per unit volume of the stacking, it poses great challenge for thermal management. Inter-tier microfluidic cooling with microgaps with surface area enhancements such as pin fins can potentially achieve superior thermal performance. As such, the hydraulic and thermal characteristics of this configuration over parametric ranges of practical interest are important. Conventional correlations developed in the literature for macropin fins show large errors for dense arrays of micropins.

In this work, the hydraulic and thermal characteristics of a microgap with pin fin were investigated for a large range of Reynolds number (Re) based on pin fin diameter (Dp) by numerical modeling. The effects of the pin fin dimensions including diameter, transversal spacing, longitudinal spacing, height and Re on the friction factor (f) and colburn j factor were studied. Correlations of the f and j for dense arrays of micro pins are developed based on parametric runs over 22< Re <357, pin fin diameter of 100 μm, pitch/ diameter ratios of 1.5 ∼ 2.25, and height/ diameter ratios of 1.5 ∼ 2.25. The validity of the correlations is confirmed by experiments. Lastly, a parametric optimization was done and the thermal resistance of the microgap with 150 W heat generation is reduced by 28.5% with the optimized dimensions for a given pumping power compared to an un-optimized pin fin configuration.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In