0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of Mechanical Reliability of 3D Electronic Packaging by Controlling the Mechanical Properties of Electroplated Materials

[+] Author Affiliations
Ken Suzuki, Hideo Miura

Tohoku University, Sendai, Miyagi, Japan

Paper No. IMECE2013-65539, pp. V010T11A083; 6 pages
doi:10.1115/IMECE2013-65539
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

Three-dimensional (3D) integration of silicon microelectronic devices improves the electronic functions of devices and minimizes packaging density drastically. A through-silicon via (TSV) structure is indispensable for maximizing the density of interconnections among the stacked silicon chips. However, since the TSV structure is surrounded by silicon, and there is large mismatch in materials properties between metallic materials used for the TSV structure and silicon, thermal stress is essentially generated around the TSV structure during their fabrication process and operating conditions. Recently, electroplated copper thin films have started to be applied to the interconnection material in the TSV structure because of its low electric resistivity and high thermal conductivity. However, the electrical resistivity of the electroplated copper thin films surrounded by SiO2 was found to vary drastically comparing with those of the conventional bulk material. This was because that the electroplated copper thin films consisted of grains with low crystallinity and grain boundaries, in other words, abnormally high defect density. Thus, both the crystallinity and electrical properties of the TSV structure was investigated quantitatively by changing their electroplating conditions and thermal history after the electroplating. It was observed that many voids and hillocks appeared in the TSV structures depending on the electroplating conditions. It was also found that the stress-induced migration occurred after the high temperature annealing which was introduced for improving the crystallinity of the electroplated films. Therefore, it is very important to evaluate the crystallographic quality of the electroplated copper thin films after electroplating to assure both the mechanical and electrical properties of the films.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In